3.8 Review

Thermogels: In Situ Gelling Biomaterial

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 2, 期 3, 页码 295-316

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.5b00515

关键词

injectable hydrogels; thermosensitive polymers; LCST; sol-gel transition

资金

  1. A*STAR Personal Care Grant [1325400026]

向作者/读者索取更多资源

In situ gel delivery systems are preferred over conventional systems due to sustained and prolonged release action of therapeutic payload onto the targeted site. Thermogel, a form of in situ gel-forming polymeric formulation, undergoes sol gel transition after administration into the body. At room temperature, the system is an aqueous polymer solution that easily entraps therapeutic payload by mixing. Upon injection, the higher physiological temperature causes gelation in situ because of the presence of thermosensitive polymers. The gel degrades gradually over time, allowing sustained release of therapeutics localized to the site of interest. This minimizes systemic toxicity and improved efficacy of drug release to the targeted site. Thermogel properties can be easily altered for specific applications via substitution and modification of components in diblock and triblock copolymer systems. The feasibility of fine-tuning allows modifications to biodegradability, biocompatibility, biological functionalization, mechanical properties, and drug release profile. This review summarized recent development in thermogel research with a focus on synthesis and self-assembly mechanisms, gel biodegradability, and applications for drug delivery, cell encapsulation and tissue engineering. This review also assessed inadequacy of material properties as a stand-alone factor on therapeutic action efficacy in human trials, with a focus on OncoGel, an experimental thermogel that demonstrated excellent individual or synergistic drug delivery system in preclinical trials but lacked therapeutic impact in human trials. Detailed analysis from all aspects must be considered during technology development for a successful thermogel platform in drug delivery and tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据