3.8 Article

Corrosion Characteristics Dictate the Long-Term Inflammatory Profile of Degradable Zinc Arterial Implants

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 2, 期 12, 页码 2355-2364

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.6b00591

关键词

degradable; corrosion; zinc; inflammation; stents

资金

  1. National Institutes of Health [R15HL129199, R21EB019118]

向作者/读者索取更多资源

There has been considerable recent interest to develop a feasible bioresorbable stent (BRS) metal. Although zinc and its alloys have many potential advantages, the inflammatory response has not been carefully examined. Using a modified wire implantation model, we characterize the inflammatory response elicited by zinc at high purity (4N) [99.99%], special high grade (SHG)[similar to 99.7%], and alloyed with 1 wt % (Zn-1Al), 3% (Zn-3Al), and 5.5% (Zn-5Al) aluminum. We found that inflammatory cells were able to penetrate the thick and porous corrosion layer that quickly formed around SHG, Zn-1Al, Zn-3Al, and Zn-5Al implants. In contrast, a delayed entrance of inflammatory cells into the corrosion layer around 4N zinc due to a significantly lower corrosion rate was associated with greater fibrous encapsulation, appearance of necrotic regions, and increased macrophage labeling. Interestingly, cell viability at the interface decreased from SHG, to Zn-1Al, and then Zn-3Al, a trend associated with an increased CD68 and CD 11b labeling and capsule thickness. Potentially, the shift to intergranular corrosion due to the aluminum addition increased the activity of macrophages. We conclude that the ability of macrophages to penetrate and remain viable within the corrosion layer may be of fundamental importance for eliciting biocompatible inflammatory responses around corrodible metals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据