4.6 Article

Tunable magneto-optical effects in hole-doped group-IIIA metal-monochalcogenide monolayers

期刊

2D MATERIALS
卷 4, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/4/1/015017

关键词

two-dimensional materials; group-IIIA metal-monochalcogenides; magneto-optical Kerr effect; magneto-optical Faraday effect; first-principles calculations

资金

  1. MOST Project of China [2014CB920903]
  2. NSF of China [11374033, 11574029, 11225418]
  3. SRFDP of China [20131101120052]
  4. Basic Research Fund of Beijing Institute of Technology [20141842004]
  5. Ministry of Science and Technology
  6. Academia Sinica
  7. NCTS of Taiwan

向作者/读者索取更多资源

Because of unusual properties and fascinating prospects for next-generation device applications, two-dimensional (2D) materials have attracted enormous attention since graphene was discovered in 2004. Among the 2D materials beyond graphene, group-IIIA metal-monochalcogenide (MX) monolayers (MLs), are receiving increasing interests because their excellent applications on electronics and optoelectronics. Recently, ferromagnetism and half-metallicity have been predicted in hole-doped GaS and GaSe MLs, which promise exciting potentials for semiconductor spintronics. Detection and measurement of spontaneous magnetization in these 2D materials will be essential for their spintronic applications. The magneto-optical (MO) effects not only are a powerful probe of magnetism in 2D materials but also have valuable applications in high-density data-storage technology. Furthermore, anomalous Hall effect is not only an ideal transport probe of itinerant magnetism but also of considerable current interest because of its topological nature. Here we perform a systematic first-principles density functional study on the MO Kerr and Faraday effects as well as such important magnetic and transport properties as magneto-crystalline anisotropy energy (MAE) and anomalous Hall conductivity (AHC) of all hole-doped MX (M = Ga, In; X = S, Se, Te) MLs. In this paper, we report the following important findings: (a) gate-tunable MO effects in MXMLs in a broad range of hole concentration; (b) large Kerr and Faraday rotation angles with Kerr angles comparable to well-known MO 3d-transition-metal multilayers and Faraday angles being among the largest ones reported; (c) tunable MAE and large AHC, making MXMLs suitable for magnetic memory devices current-driven via spin-transfer torque and also promising materials for magnetic field nanosensors with high sensitivity. Superior MO characteristics, together with the other interesting properties, would make MXMLs an excellent family of 2D materials for semiconductor MO and spintronic nanodevices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据