3.8 Article

Bulk Viscosity of Relativistic npeμ Matter in Neutron-Star Mergers

期刊

PARTICLES
卷 5, 期 3, 页码 361-376

出版社

MDPI
DOI: 10.3390/particles5030029

关键词

bulk viscosity; weak processes; npe mu matter; binary neutron star mergers; damping of density oscillations

资金

  1. U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-05ER41375]
  2. Volkswagen Foundation (Hannover, Germany) [96 839]
  3. European COST Action PHAROS [CA16214]
  4. Deutsche Forschungsgemeinschaft [SE 1836/5-2]
  5. Polish NCN at Wroclaw University [2020/37/B/ST9/01937]

向作者/读者索取更多资源

In this study, we investigate the bulk viscosity of hot and dense npe mu matter, focusing on the neutrino-transparent and neutrino-trapped regimes. Using a relativistic density functional approach, we model the nuclear matter with density-dependent parametrization DDME2. Our results show that the bulk viscosity reaches its maximum value at lower temperatures in the neutrino-transparent regime and then decreases rapidly at higher temperatures with neutrino-trapping. As an astrophysical application, we estimate the damping timescales of density oscillations in neutron star mergers and find that the bulk viscosity can significantly affect the post-merger object's evolution at certain temperatures.
We discuss the bulk viscosity of hot and dense npe mu matter arising from weak-interaction direct Urca processes. We consider two regimes of interest: (a) the neutrino-transparent regime with T <= T-t(r) ( T-t(r) similar or equal to 5 divided by 10 MeV is the neutrino-trapping temperature); and (b) the neutrino-trapped regime with T >= T-t(r). Nuclear matter is modeled in relativistic density functional approach with density-dependent parametrization DDME2. The maximum of the bulk viscosity is achieved at temperatures T similar or equal to 5 divided by 6 MeV in the neutrino-transparent regime, then it drops rapidly at higher temperatures where neutrino-trapping occurs. As an astrophysical application, we estimate the damping timescales of density oscillations by the bulk viscosity in neutron star mergers and find that, e.g., at the oscillation frequency f = 10 kHz, the damping will be very efficient at temperatures 4 <= T <= 7 MeV where the bulk viscosity might affect the evolution of the post-merger object.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据