4.3 Review

A Minireview on the Regeneration of NCM Cathode Material Directly from Spent Lithium-Ion Batteries with Different Cathode Chemistries

期刊

INORGANICS
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/inorganics10090141

关键词

NCM cathode materials; spent lithium-ion batteries; regeneration; spent LCO batteries; renovated cathode material

资金

  1. Ministry of Science and Higher Education of the Russian Federation [075-15-20211333]

向作者/读者索取更多资源

This review showcases strategies and techniques for regenerating LiNixCoyMnzO2 cathode active materials directly from commonly used and different types of mixed-cathode materials. It also systematically analyzes the economic benefits and diverse synthetic routes reported in the literature.
Research on the regeneration of cathode materials of spent lithium-ion batteries for resource reclamation and environmental protection is attracting more and more attention today. However, the majority of studies on recycling lithium-ion batteries (LIBs) placed the emphasis only on recovering target metals, such as Co, Ni, and Li, from the cathode materials, or how to recycle spent LIBs by conventional means. Effective reclamation strategies (e.g., pyrometallurgical technologies, hydrometallurgy techniques, and biological strategies) have been used in research on recycling used LIBs. Nevertheless, none of the existing reviews of regenerating cathode materials from waste LIBs elucidated the strategies to regenerate lithium nickel manganese cobalt oxide (NCM or LiNixCoyMnzO2) cathode materials directly from spent LIBs containing other than NCM cathodes but, at the same time, frequently used commercial cathode materials such as LiCoO2 (LCO), LiFePO4 (LFP), LiMn2O4 (LMO), etc. or from spent mixed cathode materials. This review showcases the strategies and techniques for regenerating LiNixCoyMnzO2 cathode active materials directly from some commonly used and different types of mixed-cathode materials. The article summarizes the various technologies and processes of regenerating LiNixCoyMnzO2 cathode active materials directly from some individual cathode materials and the mixed-cathode scraps of spent LIBs without their preliminary separation. In the meantime, the economic benefits and diverse synthetic routes of regenerating LiNixCoyMnzO2 cathode materials reported in the literature are analyzed systematically. This minireview can lay guidance and a theoretical basis for restoring LiNixCoyMnzO2 cathode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据