4.0 Article

Laser-Treated Surfaces for VADs: From Inert Titanium to Potential Biofunctional Materials

期刊

BME FRONTIERS
卷 2022, 期 -, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.34133/2022/9782562

关键词

-

资金

  1. CAPES
  2. CNPq
  3. FAPESP
  4. KIT
  5. IFSP
  6. UNIFESP
  7. TAS
  8. FAJ
  9. MPF

向作者/读者索取更多资源

Laser treatment of titanium surfaces for ventricular assist devices is proposed in this study. The created biofunctional surface showed enhanced cell adhesion and proliferation in vitro, indicating its potential application in improving the performance of biomaterials for cardiac assistance devices.
Objective. Laser-treated surfaces for ventricular assist devices. Impact Statement. This work has scientific impact since it proposes a biofunctional surface created with laser processing in bioinert titanium. Introduction. Cardiovascular diseases are the world's leading cause of death. An especially debilitating heart disease is congestive heart failure. Among the possible therapies, heart transplantation and mechanical circulatory assistance are the main treatments for its severe form at a more advanced stage. The development of biomaterials for ventricular assist devices is still being carried out. Although polished titanium is currently employed in several devices, its performance could be improved by enhancing the bioactivity of its surface. Methods. Aiming to improve the titanium without using coatings that can be detached, this work presents the formation of laser-induced periodic surface structures with a topology suitable for cell adhesion and neointimal tissue formation. The surface was modified by femtosecond laser ablation and cell adhesion was evaluated in vitro by using fibroblast cells. Results. The results indicate the formation of the desired topology, since the cells showed the appropriate adhesion compared to the control group. Scanning electron microscopy showed several positive characteristics in the cells shape and their surface distribution. The in vitro results obtained with different topologies point that the proposed LIPSS would provide enhanced cell adhesion and proliferation. Conclusion. The laser processes studied can create new interactions in biomaterials already known and improve the performance of biomaterials for use in ventricular assist devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据