4.2 Article

Massive Dirac fermions in moire superlattices: A route towards topological flat minibands and correlated topological insulators

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.L032024

关键词

-

资金

  1. U.S. DOE NNSA through the LDRD Program [89233218CNA000001]
  2. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Condensed Matter Theory Program
  3. Air Force Office of Scientific Research [FA9550-20-1-0220]
  4. National Science Foundation [PHY-2110212]
  5. Army Research Office [W911NF-17-1-0128]
  6. NSF [NSF-EFMA-1741618]

向作者/读者索取更多资源

This research demonstrates a generic mechanism to achieve topological flat minibands by confining massive Dirac fermions in a periodic moiré potential. It clarifies the importance of Dirac structure for the topological minibands and unveils a general strategy to design topological moire materials.
We demonstrate a generic mechanism to realize topological flat minibands by confining massive Dirac fermions in a periodic moire potential, which can be achieved in a heterobilayer of transition metal dichalco-genides. We show that the topological phase can be protected by the symmetry of moire potential and survive to arbitrarily large Dirac band gap. We take the MoTe2/WSe2 heterobilayer as an example and find that the topological phase can be driven by a vertical electric field. By projecting the Coulomb interaction onto the topological fat minibands, we identify a correlated Chern insulator at half filling and a quantum valley-spin Hall insulator at full filling which explains the topological states observed in the MoTe2/WSe2 in the experiment. Our work clarifies the importance of Dirac structure for the topological minibands and unveils a general strategy to design topological moire materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据