4.6 Article

Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix

期刊

BIOMIMETICS
卷 7, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/biomimetics7030101

关键词

menin; plastic compression; dense collagen; mineralization; osteoblastic differentiation

资金

  1. FRQNT
  2. NSERC
  3. CFI, McGill Faculty of Engineering
  4. Reseau de Recherche en Sante Buccodentaire et Osseuse du Quebec

向作者/读者索取更多资源

Bone extracellular matrix (ECM) is crucial for osteoblast differentiation and matrix mineralization. In this study, a biomimetic 3D osteoid-like collagen gel model was used to investigate the role of menin in osteoblastic differentiation and mineralization. The findings suggest that menin plays an important role in maintaining matrix mineralization in the early stages of osteoblast differentiation.
Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prxl-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据