4.2 Article

Fidelity measurement of a multiqubit cluster state with minimal effort

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.033162

关键词

-

资金

  1. Danmarks Grundforskningsfond (DNRF) [139]
  2. European Union [820445]
  3. Quantum Internet Alliance

向作者/读者索取更多资源

This paper proposes a physically motivated method for experimentally assessing the fidelity of cluster states. The method provides a lower bound of the fidelity with a number of measurement settings scaling only linearly with the system size and can accurately account for errors likely to occur in experiments.
The size of the Hilbert space for a multiqubit state scales exponentially with the number of constituent qubits. Often this leads to a similar exponential scaling of the experimental resources required to characterize the state. Contrary to this, we propose a physically motivated method for experimentally assessing the fidelity of an important class of entangled states known as cluster states. The proposed method always yields a lower bound of the fidelity with a number of measurement settings scaling only linearly with the system size, and is tailored to correctly account for the errors most likely to occur in experiments. For one-dimensional cluster states, the constructed fidelity measure is tight to lowest order in the error probability for experimentally realistic noise sources and thus closely matches the true fidelity. Furthermore, it is tight for the majority of higher-order errors, except for a small subset of certain nonlocal multiqubit errors irrelevant in typical experimental situations. The scheme also performs very well for higher-dimensional cluster states, assessing correctly the majority of experimentally relevant errors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据