4.7 Article

Total electrification of large-scale nanophotonic arrays by frictional charges

期刊

NANOSCALE HORIZONS
卷 7, 期 12, 页码 1513-1522

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nh00338d

关键词

-

资金

  1. EPSRC [EP/R008841/1]

向作者/读者索取更多资源

This study demonstrates the generation and detection of localized surface plasmon resonance (LSPR) wavelength shifts in large-area nanostructured gold surfaces using frictional charges generated by triboelectric surfaces. The interplay between localized surface plasmons and frictional charges is observed and analyzed through spectroscopic and triboelectric measurements, as well as theoretical models and surface characterization. The concept of electrification of plasmon resonance provides the foundation for the development of self-powered nano-plasmonic sensors and opens new possibilities for advanced nanophotonic applications.
Localized surface plasmon resonance (LSPR) of metallic nanostructures is a unique phenomenon that controls the light in sub-wavelength volumes and enhances the light-matter interactions. Traditionally, the excitation and measurement of LSPR require bulky external light sources, and efforts to scale down to nano-plasmonic devices have predominantly relied on the system's miniaturization and associated accessories. Addressing this, here we show the generation and detection of LSPR wavelength (lambda(LSPR)) shifts in large-area nanostructured Au surfaces using frictional charges generated by triboelectric surfaces. We observe a complex interplay of the localized surface plasmons with frictional charges via concurrent spectroscopic and triboelectric measurements undertaken for the detection of bioconjugation in the streptavidin-biotin complex. When subjected to multivariate principal component analysis, a strong correlation between the triboelectric peak-to-peak voltage output response and the lambda(LSPR) shift is observed. Furthermore, we reveal a landscape of the interfacial events involved in the electrical generation/detection of the LSPR by using theoretical models and surface characterization. The demonstrated concept of electrification of plasmon resonance thus provides the underlying basis for the subsequent development of self-powered nano-plasmonic sensors and opens new horizons for advanced nanophotonic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据