4.3 Article

Properties of Switching Transient in the Semi-Insulating GaAs Photoconductive Semiconductor Switch With Opposed Contacts

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPS.2022.3207061

关键词

Optical switches; Transient analysis; Gallium arsenide; Mathematical models; Current density; Charge carrier processes; Numerical models; Avalanche domains; opposed contacts; semi-insulating-gallium arsenide photoconductive semiconductor switch (SI-GaAs PCSS); switching transient

资金

  1. Huxiang Youth Talent Support Program [2020RC3030]
  2. Foundation of State Key Laboratory of Pulsed Power Laser Technology [SK2021ZR02, SKL2021KF05]

向作者/读者索取更多资源

This article studies the properties of switching transient in the opposed-contact semi-insulating (SI) gallium arsenide photoconductive semiconductor switch (GaAs PCSS). The numerical results show that there is a positive feedback loop between the increase of the carrier density and the formation and evolution of the avalanche domains, achieving ultrafast switching. Higher bias voltage and triggering optical intensity can promote the earlier formation of the avalanche domains and accelerate their evolution, resulting in shorter delay time and switching time. The positions of triggering determine the distribution of avalanche domains in the opposed structure, affecting the delay time, with cathode triggering resulting in the shortest delay time. Current crowding mainly occurs near the contacts in the opposed structure, causing damage to the contact edges and presenting different failure characteristics. Anode triggering is effective in suppressing current crowding to improve the lifetime of the opposed-contact PCSS.
The properties of switching transient in the gallium arsenide photoconductive semiconductor switch (GaAs PCSS) are significant for improving the device lifetime. In this article, the properties of switching transient in the opposed-contact semi-insulating (SI) GaAs PCSS, including the physical process of the ultrafast switching, the characteristics of delayed breakdown, and the current density distribution, are studied, based on an effective 2-D, time-dependent numerical model. The numerical results demonstrate that there exists a positive feedback loop between the increase of the carrier density and the formation and evolution of the avalanche domains, which achieves the ultrafast switching of the opposed-contact SI-GaAs PCSS. The higher bias voltage and triggering optical intensity can promote the earlier formation of the avalanche domains and accelerate the evolution of the domains, leading to a shorter delay time and switching time. The triggering positions determine the distribution of the avalanche domains in the opposed structure, affecting the delay time, among which the cathode triggering leads to the shortest delay time. Current crowding in the opposed structure mainly occurs in the vicinity of the contacts, which first damages the edges of the contacts and makes the areas near the contacts present different failure characteristics. Our analysis indicates that anode triggering is effective for suppressing the current crowding to improve the lifetime of the opposed-contact PCSS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据