4.2 Article

Machine learning for excitation energy transfer dynamics

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.033175

关键词

-

资金

  1. South African Research Chair Initiative of the Department of Science and Innovation
  2. National Research Foundation of the Republic of South Africa
  3. NICIS (National Integrated Cyber Infrastructure System) e -research

向作者/读者索取更多资源

The hierarchical equations of motion (HEOM) are used to simulate the dynamics of an open quantum system, and a classical machine learning (ML) approach is employed to solve the computational problem. The ML models, including convolutional neural networks, are capable of accurately predicting Hamiltonian parameters with a 99.28% accuracy rate.
A wellknown approach to describe the dynamics of an open quantum system is to compute the master equation evolving the reduced density matrix of the system. This approach plays an important role in describing excitation transfer through photosynthetic light harvesting complexes (LHCs). The hierarchical equations of motion (HEOM) was adapted by Ishizaki and Fleming [J. Chem. Phys.130, 234111 (2009)] to simulate open quantum dynamics in the biological regime. We generate a set of time-dependent observables that depict the coherent propagation of electronic excitations through the LHCs by solving the HEOM. The computationally intractable problem here is addressed using classical machine learning (ML). The ML architecture constructed here is of model character and it is used to solve the inverse problem for open quantum systems within the HEOM approach. The objective is to determine whether a trained ML model can perform Hamiltonian tomography by using the time dependence of the observables as inputs. We demonstrate the capability of convolutional neural networks to tackle this research problem. The models developed here can predict Hamiltonian parameters such as excited state energies and inter-site couplings of a system up to 99.28% accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据