4.5 Article

Is ABA the exogenous vector of interplant drought cuing?

期刊

PLANT SIGNALING & BEHAVIOR
卷 17, 期 1, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15592324.2022.2129295

关键词

Abscisic acid; drought cuing; exogenous cuing; phenotypic plasticity; Pisum sativum; plant communication

资金

  1. Israel Science Foundation

向作者/读者索取更多资源

Recent research has found that root signals from drought-stressed plants can increase the survival time of neighboring plants under drought conditions, but this comes with performance costs under benign conditions. The involvement of abscisic acid (ABA) is high, as interplant drought signaling is greatly reduced in ABA-deficient plants.
We have recently demonstrated that root cuing from drought-stressed plants increased the survival time of neighboring plants under drought, which came at performance costs under benign conditions. The involvement of abscisic acid (ABA) was implicated from additional experiments in which interplant drought cuing was greatly diminished in ABA-deficient plants. Here, we tested the hypothesis that ABA is the exogenous vector of interplant drought cuing. Pisum sativum plants were grown in rows of three split-root plants. One of the roots of the first plant was subjected to either drought of benign conditions in one rooting vial, while its other root shared its rooting vial with one of the roots of an unstressed neighbor, which in turn shared its other rooting vial with an additional unstressed neighbor. One hour after subjecting one of the roots of the first plant to drought, ABA concentrations were 106% and 145% higher around its other root and the roots of its unstressed neighbor, compared to their respective unstressed controls; however, the absolute concentrations of ABA found in the rooting media were substantially low. The results may indicate that despite its involvement in interplant drought and the commonly observed exchange of ABA between drought-stressed plants and their rhizospheres, ABA is not directly involved in exogenous interplant drought cuing. However, previous studies have shown that even minute concentrations of ABA in the rhizosphere can prevent ABA leakage from roots and thus to significantly increase endogenous ABA levels. In addition, under drought conditions, plants tend to accumulate ABA, which could markedly increase internal ABA concentrations over time and ABA concentrations in close proximity to the root surface might be significantly greater than estimated from entire rooting volumes. Finally, phaseic acid, an ABA degradation product, is known to activate various ABA receptors, which could enhance plant drought tolerance. It is thus feasible that while the role of ABA is limited, its more stable degradation products could play a significant role in interplant drought cuing. Our preliminary findings call for an extensive investigation into the identity and modes of operation of the exogenous vectors of interplant drought cuing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据