4.6 Article

Dark and thermal reservoir contributions to polariton sound velocity

期刊

PHYSICAL REVIEW B
卷 106, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.L121301

关键词

-

资金

  1. Russian Foundation for Basic Research [21-52-12038]
  2. MEPhI Program Priority 2030

向作者/读者索取更多资源

This work theoretically analyzes the influence of bright and dark reservoir populations on the sound velocity of incoherently driven polaritons. The contribution of dark excitons is found to significantly lower the sound velocity and deviate it from the square-root-like behavior.
Exciton-polaritons in an optical microcavity can form a macroscopically coherent state despite being an inherently driven-dissipative system. In comparison with equilibrium bosonic fluids, polaritonic condensates possess multiple peculiarities that make them behave differently from well-known textbook examples. One such peculiarity is the presence of dark excitons which are created by the pump together with optically active particles. They can considerably affect the spectrum of elementary excitations of the condensate and hence change its superfluid properties. Here, we theoretically analyze the influence of the bright and dark reservoir populations on the sound velocity c(s) of incoherently driven polaritons. Both pulsed and continuous-wave pumping schemes characterized by essentially different condensate-to-reservoir ratios are considered. We show that the dark exciton contribution leads to considerable lowering of c(s) and to its deviation from the square-root-like behavior on the system's chemical potential (measurable condensate blueshift). Importantly, our model allows us to unambiguously define the density of dark excitons in the system by experimentally tracking c(s) against the condensate blueshift and fitting the dependence at a given temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据