4.8 Article

System-wide vitreous proteome dissection reveals impaired sheddase activity in diabetic retinopathy

期刊

THERANOSTICS
卷 12, 期 15, 页码 6682-6704

出版社

IVYSPRING INT PUBL
DOI: 10.7150/thno.72947

关键词

ADAM10; ectodomain shedding; diabetic retinopathy; sheddase; vitreous proteome

资金

  1. Singapore Biomedical Research Council-Strategic Positioning Fund [BMRC-SPF-SIPRAD, SPF-SIPRAD-2014/002]
  2. National Medical Research Council Singapore Large Collaborative Grant TAAP [NMRC/OFLCG/004/2018]
  3. Singapore Ministry of Health's National Medical Research Council (NMRC) [MOH-000539]
  4. Institute of Molecular and Cell Biology (IMCB) , Agency for Science, Technology and Research (A*STAR)

向作者/读者索取更多资源

Diabetic retinopathy (DR) is a major complication of diabetes mellitus, and anti-vascular endothelial growth factor (VEGF) therapy is commonly used for treatment. However, many DR patients do not respond well to this treatment. This study used proteome profiling to identify dysregulations in metabolic, signaling, and immune networks in the vitreous humor of PDR patients. The impaired ADAM10-AXL axis was proposed as a driver of retinal angiogenesis, and restoring aberrant ectodomain shedding was suggested as a potential treatment strategy for PDR.
Rationale: Diabetic retinopathy (DR) is a major complication of diabetes mellitus causing significant vision loss. DR is a multifactorial disease involving changes in retinal microvasculature and neuronal layers, and aberrations in vascular endothelial growth factors (VEGF) and inflammatory pathways. Despite the success of anti-VEGF therapy, many DR patients do not respond well to the treatment, emphasizing the involvement of other molecular players in neuronal and vascular aberrations in DR. Methods: We employed advanced mass spectrometry-based proteome profiling to obtain a global snapshot of altered protein abundances in vitreous humor from patients with proliferative DR (PDR) in comparison to individuals with epiretinal membrane without active DR or other retinal vascular complications. Global proteome correlation map and protein-protein interaction networks were used to probe into the functional inclination of proteins and aberrated molecular networks in PDR vitreous. In addition, peptide-centric analysis of the proteome data was carried out to identify proteolytic processing, primarily ectodomain shedding events in PDR vitreous. Functional validation experiments were performed using preclinical models of ocular angiogenesis. Results: The vitreous proteome landscape revealed distinct dysregulations in several metabolic, signaling, and immune networks in PDR. Systematic analysis of altered proteins uncovered specific impairment in ectodomain shedding of several transmembrane proteins playing critical roles in neurodegeneration and angiogenesis, pointing to defects in their regulating sheddases, particularly ADAM10, which emerged as the predominant sheddase. We confirmed that ADAM10 protease activity was reduced in animal models of ocular angiogenesis and established that activation of ADAM10 can suppress endothelial cell activation and angiogenesis. Furthermore, we identified the impaired ADAM10-AXL axis as a driver of retinal angiogenesis. Conclusion: We demonstrate restoration of aberrant ectodomain shedding as an effective strategy for treating PDR and propose ADAM10 as an attractive therapeutic target. In all, our study uncovered impaired ectodomain shedding as a prominent feature of PDR, opening new possibilities for advancement in the DR therapeutic space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据