4.8 Review

Biochar as construction materials for achieving carbon neutrality

期刊

BIOCHAR
卷 4, 期 1, 页码 -

出版社

SPRINGER SINGAPORE PTE LTD
DOI: 10.1007/s42773-022-00182-x

关键词

Engineered biochar; Biomass waste management; Carbon-negative materials; Carbon neutrality; Supplementary cementitious materials; Sustainable construction

资金

  1. Hong Kong Green Tech Fund [GTF202020153]
  2. Hong Kong Environment and Conservation Fund [104/2021]

向作者/读者索取更多资源

Biochar is a waste-derived material that can be compatible with cement, asphalt, and polymer materials due to its porous nature and functionalized surface. This study critically reviewed the latest research on biochar-enhanced construction materials, discussing their effectiveness, mechanisms, and additional value in the construction industry.
Biochar is a waste-derived material that can sequester carbon at a large scale. The development of low-carbon and sustainable biochar-enhanced construction materials has attracted extensive interest. Biochar, having a porous nature and highly functionalised surface, can provide nucleation sites for chemical reactions and exhibit compatibility with cement, asphalt, and polymer materials. This study critically reviewed the state-of-the-art biochar-enhanced construction materials, including biochar-cement composites, biochar-asphalt composites, biochar-plastic composites, etc. The efficacies and mechanisms of biochar as construction materials were articulated to improve their functional properties. This critical review highlighted the roles of biochar in cement hydration, surface functional groups of engineered biochar for promoting chemical reactions, and value-added merits of biochar-enhanced construction materials (such as humidity regulation, thermal insulation, noise reduction, air/water purification, electromagnetic shielding, and self-sensing). The major properties of biochar are correlated to the features and functionalities of biochar-enhanced construction materials. Further advances in our understanding of biochar's roles in various composites can foster the next-generation design of carbon-neutral construction materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据