4.7 Article

Effect of combined roundness and polydispersity on the phase behavior of hard-rectangle fluids

期刊

PHYSICAL REVIEW E
卷 106, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.106.034602

关键词

-

资金

  1. [PGC2018-096606-B-I00]

向作者/读者索取更多资源

In this study, we introduce a model for a polydisperse rounded hard rectangle fluid and investigate the effects of roundness and polydispersity on phase behavior. Roundness has a significant impact on the stability of the tetratic phase and the transitions between isotropic, nematic, and tetratic phases. Polydispersity induces fractionation between coexisting phases and can change the transition order from second to first. The findings highlight the importance of considering roundness and polydispersity in understanding the behavior of complex fluids.
We introduce a model for a fluid of polydisperse rounded hard rectangles where the length and width of the rectangular core are fixed, while the roundness is taken into account by the convex envelope of a disk displaced along the perimeter of the core. The diameter of the disk has a continuous polydispersity described by a Schulz distribution function. We implemented the scaled particle theory for this model with the aim of studying: (i) the effect of roundness on the phase behavior of the one-component hard-rectangle fluid and (ii) how polydispersity affects phase transitions between isotropic, nematic, and tetratic phases. We found that roundness greatly affects the tetratic phase, whose region of stability in the phase diagram strongly decreases as the roundness parameter is increased. Also, the interval of aspect ratios where the tetratic-nematic and isotropic-nematic phase transitions are of first order considerably reduces with roundness, both transitions becoming weaker. Polydispersity induces strong fractionation between the coexisting phases, with the nematic phase enriched in particles of lower roundness. Finally, for high enough polydispersity and certain mean aspect ratios, the isotropic-to-nematic transition can change from second (for the one-component fluid) to first order. We also found a packing-fraction inversion phenomenon for large polydispersities: the coexisting isotropic phase has a higher packing fraction than the nematic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据