4.5 Article

Multicolor Histochemical Staining for Identification of Mineralized and Non-Mineralized Musculoskeletal Tissue: Immunohistochemical and Radiological Validation in Decalcified Bone Samples

期刊

BIOENGINEERING-BASEL
卷 9, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/bioengineering9100488

关键词

musculoskeletal tissue; fracture callus; cartilage; muscle; histochemistry; immunohistochemistry; radiology

资金

  1. Helmholtz Association

向作者/读者索取更多资源

In this study, a novel multicolor staining protocol was introduced for the visualization of multiple tissue components in bone samples. The staining method, which involved optimized reagents and procedures, allowed the simultaneous identification of high-mineralized bone, low-mineralized fracture callus, cartilage, and skeletal muscle fibers. The efficacy of the staining method was further validated through immunohistochemical staining and micro-CT analysis. The results demonstrated that the multicolor staining provided quality outcomes with fewer reagents and simplified procedures, making it a valuable tool for future preclinical research involving decalcified paraffin-embedded samples.
Histochemical staining of paraffin-embedded decalcified bone samples is commonly used in preclinical research of musculoskeletal diseases, enabling the visualization of multiple tissue components by the application of chromogens. The purpose of this study was to introduce a novel multicolor staining protocol involving optimized chemical reagents and procedure, allowing the identification of high-mineralized bone, low-mineralized fracture callus, cartilage and skeletal muscle fibers simultaneously. Fractured femur and healthy tail vertebra samples from adult male Sprague-Dawley rats were decalcified with EDTA and formic acid, respectively, followed by paraffin embedding, tissue sectioning and multicolor staining. Conventional Movat's pentachrome and safranin O / fast green staining were conducted in parallel for comparison. Immunohistochemical staining of collagen type-X and micro-CT analysis were included to further validate the efficacy of the staining method. The multicolor staining allowed visualization of major musculoskeletal tissue components in both types of decalcified samples, providing quality outcomes with fewer chemical reagents and simplified procedures. Immunohistochemical staining demonstrated its capacity for identification of the endochondral ossification process during fracture healing. Micro-CT imaging validated the staining outcome for high-mineralized skeletal tissue. The application of the multicolor staining may facilitate future preclinical research involving decalcified paraffin-embedded samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据