4.5 Article

Verification of the Efficacy of Mexiletine Treatment for the A1656D Mutation on Downgrading Reentrant Tachycardia Using a 3D Cardiac Electrophysiological Model

期刊

BIOENGINEERING-BASEL
卷 9, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/bioengineering9100531

关键词

LQT3; mutation; reentry; APD; alternant

资金

  1. Ministry of Food and Drug Safety [22213MFDS3922]
  2. NRF (National Research Foundation of Korea) [2022R1A2C2006326]
  3. MSIT (Ministry of Science and ICT), Korea [IITP-2022-2020-0-01612]
  4. National Research Foundation of Korea [2022R1A2C2006326] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The study found that mexiletine can effectively treat LQT3 patients associated with the A1656D mutation by shortening the cell's action potential duration, changing the occurrence of alternans, and reducing the chances of spiral wave breakup.
The SCN5A mutations have been long associated with long QT variant 3 (LQT3). Recent experimental and computation studies have reported that mexiletine effectively treats LQT3 patients associated with the A1656D mutation. However, they have primarily focused on cellular level evaluations and have only looked at the effects of mexiletine on action potential duration (APD) or QT interval reduction. We further investigated mexiletine's effects on cardiac cells through simulations of single-cell (behavior of alternant occurrence) and 3D (with and without mexiletine). We discovered that mexiletine could shorten the cell's APD and change the alternant's occurrence to a shorter basic cycle length (BCL) between 350 and 420 ms. The alternant also appeared at a normal heart rate under the A1656D mutation. Furthermore, the 3D ventricle simulations revealed that mexiletine could reduce the likelihood of a greater spiral wave breakup in the A1656D mutant condition by minimizing the appearance of rotors. In conclusion, we found that mexiletine could provide extra safety features during therapy for LQT3 patients because it can change the alternant occurrence from a normal to a faster heart rate, and it reduces the chance of a spiral wave breakup. Therefore, these findings emphasize the promising efficacy of mexiletine in treating LQT3 patients under the A1656D mutation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据