3.8 Proceedings Paper

UNeXt: MLP-Based Rapid Medical Image Segmentation Network

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/978-3-031-16443-9_3

关键词

Medical image segmentation; MLP; Point-of-care

向作者/读者索取更多资源

UNeXt is a Convolutional multilayer perceptron (MLP) based network for medical image segmentation. It reduces the number of parameters, computational complexity, and improves segmentation performance through tokenized MLP blocks and channel shifting.
UNet and its latest extensions like TransUNet have been the leading medical image segmentation methods in recent years. However, these networks cannot be effectively adopted for rapid image segmentation in point-of-care applications as they are parameter-heavy, computationally complex and slow to use. To this end, we propose UNeXt which is a Convolutional multilayer perceptron (MLP) based network for image segmentation. We design UNeXt in an effective way with an early convolutional stage and a MLP stage in the latent stage. We propose a tokenized MLP block where we efficiently tokenize and project the convolutional features and use MLPs to model the representation. To further boost the performance, we propose shifting the channels of the inputs while feeding in to MLPs so as to focus on learning local dependencies. Using tokenized MLPs in latent space reduces the number of parameters and computational complexity while being able to result in a better representation to help segmentation. The network also consists of skip connections between various levels of encoder and decoder. We test UNeXt on multiple medical image segmentation datasets and show that we reduce the number of parameters by 72x, decrease the computational complexity by 68x, and improve the inference speed by 10x while also obtaining better segmentation performance over the state-of-the-art medical image segmentation architectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据