4.3 Article

Oxygen Ion and Proton Transport in Alkali-Earth Doped Layered Perovskites Based on BaLa2In2O7

期刊

INORGANICS
卷 10, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/inorganics10100161

关键词

layered perovskite; Ruddlesden-Popper structure; oxygen ion conductivity; proton conductivity

向作者/读者索取更多资源

Inorganic materials with layered perovskite structures exhibit various physical and chemical properties. This study focuses on the oxygen ion and proton transport in alkali-earth doped layered perovskites based on BaLa2In2O7. Doping significantly enhances the conductivity values and the most proton-conductive samples exhibit high conductivity under wet air conditions.
Inorganic materials with layered perovskite structures have a wide range of physical and chemical properties. Layered perovskites based on BaLanInnO3n+1 (n = 1, 2) were recently investigated as protonic conductors. This work focused on the oxygen ion and proton transport (ionic conductivity and mobility) in alkali-earth (Sr2+, Ba2+)-doped layered perovskites based on BaLa2In2O7. It is shown that in the dry air conditions, the nature of conductivity is mixed oxygen-hole, despite the dopant nature. Doping leads to the increase in the conductivity values by up to similar to 1.5 orders of magnitude. The most proton-conductive BaLa1.7Ba0.3In2O6.85 and BaLa1.7Sr0.15In2O6.925 samples are characterized by the conductivity values 1.2.10(-4) S/cm and 0.7.10(-4) S/cm at 500 degrees C under wet air, respectively. The layered perovskites with Ruddlesden-Popper structure, containing two layers of perovskite blocks, are the prospective proton-conducting materials and further material science searches among this class of materials is relevant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据