4.7 Article

Automatic tree crown segmentation using dense forest point clouds from Personal Laser Scanning (PLS)

出版社

ELSEVIER
DOI: 10.1016/j.jag.2022.103025

关键词

Personal laser scanning; Automatic tree segmentation; Region growing; Forest point cloud data; Crown models; Forest inventory

向作者/读者索取更多资源

Personal laser scanning (PLS) has the potential to monitor complex forests, and an automatic voxel-based region growing crown segmentation algorithm can accurately extract tree characteristics, providing an efficient and low-cost solution for digital forest inventory.
Among digital-based technologies to monitor forest ecosystems, personal laser scanning (PLS) has high potential to characterize even complex deciduous and rainforests. PLS data include a complete and detailed 3D representation of forest stands, but tree individuals need to be segmented accurately before retrieving tree characteristics. As manual on-screen segmentation is time-consuming and labor intensive, we suggest an automatic voxel-based region growing crown segmentation algorithm. Diameter at breast height (dbh), tree height, crown base height (cbh), crown projection area (cpa) and crown volume were automatically extracted from single tree point clouds. The methodology was validated on previously published PLS raw data in terms of segmentation accuracy and measurement precision. Manual segmentation, field measurements, and geometrical crown models were used as reference data. The overall segmentation accuracy of the crowns was 87.02% and tree height was accurately measured with a bias of -0.05 m and a root mean square deviation (RMSD) of 1.21 m (6.33%). Existing geometric crown models proved to be a realistic approximation of the true crown architecture and matched the measured tree crown volume with a bias of -4.62 m3 and a RMSD of 63.02 m3 (31.72%). Tree height and cpa were not affected by segmentation accuracy, but a major challenge remained in estimating cbh. The proposed methodology provides an efficient and low-cost solution for a fully automatic and digital forest inventory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据