4.5 Article

Synthesis and characterization of copper zinc iron sulphide (CZFS) thin films

期刊

HELIYON
卷 8, 期 8, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2022.e10331

关键词

Substrates; Optical; Thin films; Bandgap; Transmittance; Chemical bath deposition; Deposition time

向作者/读者索取更多资源

In this study, quaternary thin films of copper zinc iron sulphide (CZFS) were deposited on glass substrates using chemical bath deposition (CBD). The effect of deposition periods on the properties of the CZFS films was investigated. It was found that the optical and electrical properties of the films changed with increasing deposition period. These results suggest that the aqueous deposited CZFS films can be used for various optoelectronic applications.
In an aqueous bath, quaternary thin films (TFs) of copper zinc iron sulphide (CZFS) were deposited on glass (soda-lime) substrates. The present study aimed to analyse the effect of deposition periods on the properties of the prepared CZFS TFs using Chemical bath deposition (CBD). The precursor and films were examined by Fourier Transform Infrared (FTIR) spectroscopy to check for the chemical formation present. Rutherford backscattering spectroscopy (RBS) was used to determine the elemental compositions and stoichiometry of the deposited films. The optical characteristics were observed by a UV-Vis Spectrophotometer and a four-point probe (FPP) for the electrical properties. The optical characterization revealed a direct transition band-gap energy that decreased from 1.96 to 1.50 eV with an increase in deposition period. The optical constants were studied with respect to the wavelength within the range of 300-900 nm. The films exhibited high resistive properties with a conductivity that varied with an increase in deposition period. The effect of deposition periods on the optical properties of refractive index, extinction coefficient, and real and imaginary parts of dielectric constants has been reported. All these parameters were found to increase with deposition period except for the film deposited for 18 h (C3). These results confirm that the aqueous deposited CZFS films can be tuned for various optoelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据