4.7 Article

Analytic Gaussian covariance matrices for galaxy N-point correlation functions

期刊

PHYSICAL REVIEW D
卷 106, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.106.043515

关键词

-

资金

  1. Wide Field Infrared Space Telescope (WFIRST) [NNG26PJ30C, NNN12AA01C]
  2. University of Florida
  3. Simons Foundation
  4. National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]

向作者/读者索取更多资源

This study derives analytic covariance matrices for the N-point correlation functions of galaxies in the Gaussian limit and compares the results with simulated data. The findings suggest that the analytic formalism provides reasonable predictions for the covariances estimated from simulated data and that fitting for an effective volume and number density can compensate for nonuniform window function effects.
We derive analytic covariance matrices for the N-point correlation functions (NPCFs) of galaxies in the Gaussian limit. Our results are given for arbitrary N and projected onto the isotropic basis functions given by spherical harmonics and Wigner 3j symbols. A numerical implementation of the 4PCF covariance is compared to the sample covariance obtained from a set of lognormal simulations, Quijote dark matter halo catalogues, and MultiDark-Patchy galaxy mocks, with the latter including realistic survey geometry. The analytic formalism gives reasonable predictions for the covariances estimated from mock simulations with a periodic-box geometry. Furthermore, fitting for an effective volume and number density by maximizing a likelihood based on Kullback-Leibler divergence is shown to partially compensate for the effects of a nonuniform window function. Our result is recently shown to facilitate NPCF analysis on a realistic survey data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据