4.6 Article

Modulating up-conversion and non-radiative deactivation to achieve efficient red thermally activated delayed fluorescence emitters

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Quenching-Resistant Multiresonance TADF Emitter Realizes 40% External Quantum Efficiency in Narrowband Electroluminescence at High Doping Level

Pengcheng Jiang et al.

Summary: This study introduces a highly emissive molecule with enhanced quenching resistance by segregating the planar MR-TADF skeleton using two bulky carbazolyl units, which significantly improves the performance of corresponding devices with a maximum external quantum efficiency of 40.0% and a full width at half maximum of 25 nm. The steric effect of the bulky carbazolyl units largely removes the formation of detrimental excimers/aggregates, leading to an OLED example that can achieve narrow bandwidth and high EL efficiency surpassing 40% to date.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Nearly 100% exciton utilization in highly efficient red OLEDs based on dibenzothioxanthone acceptor

Xiaoxiao Hu et al.

Summary: In this study, three red TADF emitters were designed and synthesized, and the utilization of excitons was improved by stabilizing the locally excited triplet state using a dibenzothioxanthone acceptor framework. The red OLEDs based on these materials exhibited high quantum efficiency and close to 100% exciton utilization.

CHINESE CHEMICAL LETTERS (2022)

Article Materials Science, Multidisciplinary

Modulating Non-Radiative Deactivation via Acceptor Reconstruction to Expand High-Efficient Red Thermally Activated Delayed Fluorescent Emitters

Jianjun Liu et al.

Summary: By reconstructing the acceptor in donor-acceptor-type materials, high-efficient red TADF emitters with red-shifted and efficient emission can be achieved, leading to a significant enhancement in OLED device efficiencies. The acceptor reconstruction strategies provide a viable solution for expanding high-efficient red-shift and/or red TADF materials.

ADVANCED OPTICAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Managing Locally Excited and Charge-Transfer Triplet States to Facilitate Up-Conversion in Red TADF Emitters That Are Available for Both Vacuum- and Solution-Processes

Jia-Xiong Chen et al.

Summary: Developing red thermally activated delayed fluorescence (TADF) emitters for high-performance OLEDs is a challenge, but the newly designed and synthesized red TADF emitters in this study show promising results with significant efficiency enhancements. Among them, oDTBPZ-DPXZ demonstrates efficient TADF feature and high exciton utilization, achieving excellent external quantum efficiency in both vacuum-processed and solution-processed OLEDs. This work provides an effective strategy for designing red TADF molecules by managing energy level alignments to enhance exciton harvesting.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Nanoscience & Nanotechnology

Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off

Jinshan Wang et al.

Summary: This study developed high-color purity organic emitters with aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) characteristics for efficient OLEDs. By utilizing rational molecular design to suppress exciton annihilation and concentration quenching, the emitters showed excellent photoluminescence quantum yields and achieved high efficiencies with low efficiency roll-offs in OLEDs.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Chemistry, Multidisciplinary

Acceptor-Donor-Acceptor-Type Orange-Red Thermally Activated Delayed Fluorescence Materials Realizing External Quantum Efficiency Over 30% with Low Efficiency Roll-Off

Durai Karthik et al.

Summary: Two new orange-red TADF materials, PzTDBA and PzDBA, exhibit high efficiency, low roll-off, and long lifetime. These materials are designed based on the A-D-A molecular configuration, which contributes to their good electronic properties.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Enhancement of Reverse Intersystem Crossing in Charge-Transfer Molecule through Internal Heavy Atom Effect

Hyung Suk Kim et al.

Summary: Thermally activated delayed fluorescence (TADF) can improve the efficiency of OLEDs by enhancing reverse intersystem crossing (RISC) rate, and incorporating the internal heavy atom (IHA) effect may further enhance this process. However, even with TADF molecules exhibiting fast RISC, significant efficiency roll-off still occurs.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Approaching Nearly 40% External Quantum Efficiency in Organic Light Emitting Diodes Utilizing a Green Thermally Activated Delayed Fluorescence Emitter with an Extended Linear Donor-Acceptor-Donor Structure

Yang Chen et al.

Summary: The study developed a high-performance TADF emitter with controlled molecular orientation and optoelectronic properties, achieving high quantum yield and fast intersystem crossing rate. The corresponding OLED device demonstrated impressive efficiency performance, pushing the device efficiency towards theoretical limits.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Realizing Record-High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules

Zheyi Cai et al.

Summary: Tailor-made red TADF molecules with intramolecular hydrogen bonding show NIR emissions in neat films and red delayed fluorescence in doped films, with high photoluminescence quantum yields. They exhibit high optical out-coupling factors due to their horizontal orientation in films. The non-doped OLEDs emit NIR lights with maximum external quantum efficiencies, while doped OLEDs achieve record-breaking efficiency levels with red lights emission. These new red TADF materials have great potentials in display and lighting devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Achieving Narrow FWHM and High EQE Over 38% in Blue OLEDs Using Rigid Heteroatom-Based Deep Blue TADF Sensitized Host

Ramanaskanda Braveenth et al.

Summary: By designing and synthesizing two new deep blue TADF materials, deep blue emission and high efficiency have been achieved in OLED devices. The deep blue TADF emitters exhibit outstanding external quantum efficiency and high photoluminescence quantum yields.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency

Jia-Xiong Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State

Siva Krishna Mohan Nalluri et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Chemistry, Physical

Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters

Yirang Im et al.

CHEMISTRY OF MATERIALS (2017)

Article Chemistry, Multidisciplinary

Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters

Przemyslaw Data et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Chemistry, Multidisciplinary

Excimer-induced high-efficiency fluorescence due to pairwise anthracene stacking in a crystal with long lifetime

Haichao Liu et al.

CHEMICAL COMMUNICATIONS (2016)

Article Multidisciplinary Sciences

Purely organic electroluminescent material realizing 100% conversion from electricity to light

Hironori Kaji et al.

NATURE COMMUNICATIONS (2015)

Article Chemistry, Multidisciplinary

Enhanced Electroluminescence Efficiency in a Spiro-Acridine Derivative through Thermally Activated Delayed Fluorescence

Gabor Mehes et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2012)

Article Multidisciplinary Sciences

Highly efficient organic light-emitting diodes from delayed fluorescence

Hiroki Uoyama et al.

NATURE (2012)