4.6 Article

When does a macromolecule transition from a polymer chain to a nanoparticle?

期刊

NANOSCALE ADVANCES
卷 4, 期 23, 页码 5164-5177

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2na00617k

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
  2. Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy
  3. NSF [DMR-0520547]
  4. European Union [654000]

向作者/读者索取更多资源

Nanoparticles are typically defined by their size, but high molecular weight chains can also reach this size and play important roles in various fields. The transition of a macromolecule from a polymer chain to a nanoparticle as internal crosslinking increases is found to be gradual rather than abrupt.
Frequently, the defining characteristic of a nanoparticle is simply its size, where objects that are 1-100 nm are characterized as nanoparticles. However, synthetic and biological macromolecules, in particular high molecular weight chains, can satisfy this size requirement without providing the same phenomena as one would expect from a nanoparticle. At the same time, soft polymer nanoparticles are important in a broad range of fields, including understanding protein folding, drug delivery, vitrimers, catalysis and nanomedicine. Moreover, the recent flourish of all polymer nanocomposites has led to the synthesis of soft all-polymer nanoparticles, which emerge from internal crosslinking of a macromolecule. Thus, there exists a transition of an internally crosslinked macromolecule from a polymer chain to a nanoparticle as the amount of internal crosslinks increases, where the polymer chain exhibits different behavior than the nanoparticle. Yet, this transition is not well understood. In this work, we seek to address this knowledge gap and determine the transition of a macromolecule from a polymer chain to a nanoparticle as internal crosslinking increases. In this work, small angle neutron scattering (SANS) offers insight into the structure of polystyrene and poly(ethyl hexyl methacrylate) nanostructures in dilute solutions, with crosslinking densities that vary from 0.1 to 10.7%. Analyses of the SANS data provides structural characteristics to classify a nanostructure as chain-like or particle-like and identify a crosslinking dependent transition between the two morphologies. It was found that for both types of polymeric nanostructures, a crosslinking density of 0.81% (similar to a crosslink for every 1 in 125 monomers) or higher exhibit clear particle-like behavior. Lower crosslinking density nanostructures showed amounts of collapse similar to that of a star polymer (0.1% XL) or a random walk polymer chain (0.4% XL). Thus, the transition of an internally crosslinked macromolecule from a polymer chain to a nanoparticle is not an abrupt transition but occurs via the gradual contraction of the chain with incorporated crosslinks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据