4.7 Article

Secondary flow in ensembles of nonconvex granular particles under shear

期刊

PHYSICAL REVIEW E
卷 106, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.106.L052901

关键词

-

资金

  1. German Science Foundation [STA 425/46-1]
  2. European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie [812638]

向作者/读者索取更多资源

This study demonstrates that nonconvex grain shapes can lead to qualitatively novel macroscopic dynamics, different from convex grains. Hexapod grains at the surface migrate towards the rotation center and sink, mimicking a reverse Weissenberg effect. The observed surface flow field suggests a radial outward flow in the depth of the granular bed, forming a convection cell.
Studies of granular materials, both theoretical and experimental, are often restricted to convex grain shapes. We demonstrate that a nonconvex grain shape can lead to a qualitatively novel macroscopic dynamics. Spatial crosses (hexapods) are continuously sheared in a split-bottom container. Thereby, they develop a secondary flow profile that is completely opposite to that of rod-shaped or lentil-shaped convex grains in the same geometry. The crosses at the surface migrate towards the rotation center and sink there mimicking a reverse Weissenberg effect. The observed surface flow field suggests the existence of a radial outward flow in the depth of the granular bed, thus, forming a convection cell. This flow field is connected with a dimple formed in the rotation center. The effect is strongly dependent on the particle geometry and the height of the granular bed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据