4.6 Article

Topological superconductor from the quantum Hall phase: Effective field theory description

期刊

PHYSICAL REVIEW B
卷 106, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.195111

关键词

-

向作者/读者索取更多资源

This study derives low-energy effective field theories for the quantum anomalous Hall and topological superconducting phases. The effective actions for both phases contain Chern-Simons terms associated with the U(1) symmetry. The proximity to a conventional superconductor induces pairing potential and leads to the formation of Cooper pairs, driving the system into a topological superconducting phase hosting Majorana fermions.
We derive low-energy effective field theories for the quantum anomalous Hall and topological superconducting phases. The quantum Hall phase is realized in terms of free fermions with nonrelativistic dispersion relation, possessing a global U (1) symmetry. We couple this symmetry with a background gauge field and compute the effective action by integrating out the gapped fermions. In spite of the fact that the corresponding Dirac operator governing the dynamics of the original fermions is nonrelativistic, the leading contribution in the effective action is a usual Abelian U (1) Chern-Simons term. The proximity to a conventional superconductor induces a pairing potential in the quantum Hall state, favoring the formation of Cooper pairs. When the pairing is strong enough, it drives the system to a topological superconducting phase, hosting Majorana fermions. Even though the continuum U (1) symmetry is broken down to a Z2 one, we can forge fictitious U (1) symmetries that enable us to derive the effective action for the topological superconducting phase, also given by a Chern-Simons theory. To eliminate spurious states coming from the artificial symmetry enlargement, we demand that the fields in the effective action are O(2) instead of U (1) gauge fields. In the O(2) case we have to sum over the Z2 bundles in the partition function, which projects out the states that are not Z2 invariants. The corresponding edge theory is the U(1)/Z2 orbifold, which contains Majorana fermions in its operator content.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据