4.7 Article

Design of an inertial fusion experiment exceeding the Lawson criterion for ignition

期刊

PHYSICAL REVIEW E
卷 106, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.106.025201

关键词

-

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory
  2. agency of the United States government
  3. [DE-AC52-07NA27344]

向作者/读者索取更多资源

This article presents the design of the first igniting fusion plasma in the laboratory by Lawson's criterion, achieving 1.37 MJ of fusion energy. The design utilizes the indirect drive inertial confinement fusion approach and shows significant improvements in ignition compared to predecessor experiments.
We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev. Lett. 129, 075001 (2022)]. This design uses the indirect drive inertial confinement fusion approach to heat and compress a central hot spot of deuterium-tritium (DT) fuel using a surrounding dense DT fuel piston. Ignition occurs when the heating from absorption of alpha particles created in the fusion process overcomes the loss mechanisms in the system for a duration of time. This letter describes key design changes which enabled a similar to 3-6x increase in an ignition figure of merit (generalized Lawson criterion) [Phys. Plasmas 28, 022704 (2021), Phys. Plasmas 25, 122704 (2018)]) and an eightfold increase in fusion energy output compared to predecessor experiments. We present simulations of the hot-spot conditions for experiment N210808 that show fundamentally different behavior compared to predecessor experiments and simulated metrics that are consistent with N210808 reaching for the first time in the laboratory ignition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据