4.6 Review

Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation

期刊

FRONTIERS IN NEUROSCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2016.00584

关键词

neurorehabilitation; neural stimulation; brain-machine interface (BMI); neuroplasticity; neural regeneration; neural interface; neural repair; spinal cord stimulation

资金

  1. National Institute of Neurological Disorders and Stroke (NINDS) [R25, 5R25NS065731-08]
  2. National Institute of Health (NIH) [K08NS060223, R01NS094748]
  3. Paralyzed Veterans of America
  4. Brain Research Foundation
  5. Doris Duke Charitable Foundation
  6. Northwestern Memorial Foundation (Dixon Translational Research Grant)
  7. National Institute of Biomedical Imaging and Bioengineering (NIBIB) [U01EB007615, U01EB015521, R43EB017641, R43EB018232]
  8. WalkAbout Foundation
  9. Christopher & Dana Reeve Foundation
  10. Broccoli Foundation
  11. NIH [R21, AG051103, RO1, NS079312, R21, NS084176, R37, NS040894]
  12. Veteran's Affairs (VA) [VA I21, BX003023, VA I21, RX002223]

向作者/读者索取更多资源

After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra-and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据