4.1 Article

Esketamine improves propofol-induced brain injury and cognitive impairment in rats

期刊

TRANSLATIONAL NEUROSCIENCE
卷 13, 期 1, 页码 430-439

出版社

DE GRUYTER POLAND SP Z O O
DOI: 10.1515/tnsci-2022-0251

关键词

brain injury; cognition impairment; esketamine; propofol; BDNF/TrkB/PI3K signaling

向作者/读者索取更多资源

Propofol, an intravenous anesthetic, induces neurotoxicity, but esketamine can attenuate propofol-induced brain injury and cognitive dysfunction by activating the mBDNF/TrkB/PI3K signaling pathway.
As an intravenous anesthetic, propofol has been indicated to induce neurotoxicity in both animal and human brains. It is of great significance to better understand the potential mechanism of propofol-induced neurotoxicity to eliminate the side effects of propofol. Esketamine is a sedative that has been proven to have an antidepressant effect. However, its effect on propofol-induced neurotoxicity and the underlying mechanism remain unclear. Herein, we investigated the role of esketamine in propofol-induced brain injury. A rat model of propofol-induced brain injury was established with or without the treatment of esketamine. The results demonstrated that propofol-induced impairment in spatial learning and memory of rats and promoted oxidative stress, neuronal injury and apoptosis in rat hippocampal tissues. The effects caused by propofol were attenuated by esketamine. Esketamine activated the mature brain-derived neurotrophic factor/tropomyosin receptor kinase B/phosphatidylinositide 3-kinase (mBDNF/TrkB/PI3K) signaling pathway in propofol-administrated rats. Moreover, knocking down BDNF partially reversed esketamine-mediated activation of the mBDNF/TrkB/PI3K signaling pathway and inhibition of neuronal apoptosis in propofol-induced rats. Overall, esketamine mitigates propofol-induced cognitive dysfunction and brain injury in rats by activating mBDNF/TrkB/PI3K signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据