4.6 Review

Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity

期刊

ENVIRONMENTAL SCIENCE-NANO
卷 3, 期 3, 页码 494-505

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5en00215j

关键词

-

资金

  1. University of Minnesota (Interdisciplinary Doctoral Fellowship, Graduate School)
  2. National Science Foundation [ECS-1012193, NSF-1012193]

向作者/读者索取更多资源

Understanding the fate and transport of engineered and naturally-occurring nanoparticles is vital to predicting their ecological and toxicological impacts. Much of the current literature details the effects of solution conditions, such as pH and ionic strength, on aggregation and reactivity. Such work has drastically improved our ability to predict how nanoparticles could impact chemistry occurring in natural waters. Recently, a focus on how organic matter (OM) impacts chemistry occurring at the solid-liquid interface has emerged. This review focuses on summarizing major findings of how OM affects iron oxide nanoparticle reactivity, with particular focus on the underlying processes. First, we review work focused on the chemical reactivity of iron oxide nanoparticles in aqueous environments. Second, the current state of knowledge regarding the adsorption of OM onto mineral surfaces and its effects on nanoparticle aggregation and ion adsorption is presented. Third, how OM impacts chemical and solid-state transformations, oxidative/reductive reactivity, and photocatalytic activity of iron oxide nanoparticles is reviewed. Finally, we provide our vision of future research directions, with particular focus on improving our ability to predict the fate, transport, and chemical behavior of nanoparticles in complex, environmental systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据