4.7 Article

Cavity deformation and bubble entrapment during the impact of droplets on a liquid pool

期刊

PHYSICAL REVIEW E
卷 106, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.106.055108

关键词

-

资金

  1. National Natural Science Foundation of China
  2. [51676137]
  3. [51921004]

向作者/读者索取更多资源

The study investigates the cavity deformation and bubble entrapment during the impact of droplets on a liquid pool, finding that gravity and environmental pressure play crucial roles in these phenomena. As gravity becomes stronger, the maximum depth of the cavity decreases, and the phenomenon of regular bubble pinch-off may disappear. Increasing environmental pressure can transform regular bubble pinch-off into large bubble entrapment. The size of the large bubble entrapped decreases with increasing environmental pressure due to differences in pressure and vorticity. Finally, a regime map of bubble entrapment after droplet impact is obtained.
The impact of droplets on a liquid pool is ubiquitous in nature and important in many industrial applications. A droplet impacting on a liquid pool can result in the pinch-off of a regular bubble or entrap a large bubble under certain impact conditions. In this study, the cavity deformation and the bubble entrapment during the impact of droplets on a liquid pool are studied by combined experimental measurements and numerical simulations. The time evolution of the free surface profile obtained in the numerical simulation is in good agreement with the experimental results. The cavity created by the droplet impact affects the pinch-off of regular bubbles and the entrapment of large bubbles. The regular bubble pinch-off is the direct consequence of the capillary wave propagating downward along the interface of the cavity and merging at the bottom of the cavity. In contrast, the large bubble entrapment is due to the merging of the liquid crowns at the mouth of the cavity. Gravity and environmental pressure play important roles in cavity deformation and bubble entrapment after droplet impact on liquid pools. The maximum depth of the cavity decreases as the gravitational effect becomes stronger. The phenomenon of regular bubble pinch-off may disappear as the gravity decreases. We find that the regular bubble pinch-off can transform into large bubble entrapment when increasing environmental pressure. The size of the large bubble entrapped decreases with increasing the environmental pressure due to the larger difference in the pressure and the vorticity around the liquid crown at increased environmental pressure. Finally, the regime map of bubble entrapment after the droplet impact is obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据