4.7 Article

Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 22, 期 24, 页码 16003-16015

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-22-16003-2022

关键词

-

向作者/读者索取更多资源

The atmospheric oxidation of dimethyl sulfide (DMS) is an important natural source of atmospheric sulfate aerosols, but the underlying chemistry that governs the product distribution and sulfate yield from DMS oxidation remains uncertain. Chamber experiments were conducted to simulate the gas-phase oxidation of DMS under various conditions, and it was found that the isomerization reactions of peroxy radicals play a significant role in product formation. The results also showed that humidity can have a significant impact on the distribution and loss of products.
The atmospheric oxidation of dimethyl sulfide (DMS) represents a major natural source of atmospheric sulfate aerosols. However, there remain large uncertainties in our understanding of the underlying chemistry that governs the product distribution and sulfate yield from DMS oxidation. Here, chamber experiments were conducted to simulate gas-phase OH-initiated oxidation of DMS under a range of reaction conditions. Most importantly, the bimolecular lifetime (tau(bi)) of the peroxy radical CH3SCH2OO was varied over several orders of magnitude, enabling the examination of the role of peroxy radical isomerization reactions on product formation. An array of analytical instruments was used to measure nearly all sulfur-containing species in the reaction mixture, and results were compared with a near-explicit chemical mechanism. When relative humidity was low, sulfur closure was achieved under both high-NO (tau(bi)< 0.1 s) and low-NO (tau(bi)> 10 s) conditions, though product distributions were substantially different in the two cases. Under high-NO conditions, approximately half the product sulfur was in the particle phase, as methane sulfonic acid (MSA) and sulfate, with most of the remainder as SO2 (which in the atmosphere would eventually oxidize to sulfate or be lost to deposition). Under low-NO conditions, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), formed from CH3SCH2OO isomerization, dominates the sulfur budget over the course of the experiment, suppressing or delaying the formation of SO2 and particulate matter. The isomerization rate constant of CH3SCH2OO at 295 K is found to be 0.13 +/- 0.03 s(-1), in broad agreement with other recent laboratory measurements. The rate constants for the OH oxidation of key first-generation oxidation products (HPMTF and methyl thioformate, MTF) were also determined (k(OH+HPMTF)=2.1x10(-11) cm(3) molec.(-1) s(-1), k(OH+MTF)=1.35x10(-11) cm(3) molec.(-1) s(-1)). Product measurements agree reasonably well with mechanistic predictions in terms of total sulfur distribution and concentrations of most individual species, though the mechanism overpredicts sulfate and underpredicts MSA under high-NO conditions. Lastly, results from high-relative-humidity conditions suggest efficient heterogenous loss of at least some gas-phase products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据