4.6 Article

Electronic Structure and Optical Properties of BiOI as a Photocatalyst Driven by Visible Light

期刊

CATALYSTS
卷 6, 期 9, 页码 -

出版社

MDPI AG
DOI: 10.3390/catal6090133

关键词

photocatalysis; water splitting; electronic structure; optical properties; DFT

资金

  1. National Natural Science Foundation of China [21473082]
  2. 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project [2015HB015]

向作者/读者索取更多资源

Bismuth oxyiodide (BiOI) is an important photoelectric functional material that has a wide range of applications. In particular, it can be used as a photocatalyst that shows photocatalytic activity under visible-light irradiation. The synthesis procedure and related photocatalytic performance of BiOI have been reported. However, some of its fundamental properties still need to be further investigated. In this article, density functional theory calculations were performed to investigate the crystal structure, electronic properties, and optical properties of BiOI. Furthermore, the relationship between the intrinsic properties and the photocatalytic performance of BiOI was investigated. Based on the calculated results of the band structure, density of states, and projected wave function, the molecular-orbital bonding structure of BiOI is proposed. As a semiconductor photocatalyst, BiOI shows slight optical anisotropy in the visible-light region, indicating that it can efficiently absorb visible light if the morphology of BiOI is controlled. After comparing several computational methods, it was found that the generalized-gradient approximation corrected for on-site Coulomb interactions (GGA + U) is a suitable computational method for large sized BiOI models (e.g., impurity doping, the surface, and the interface) because it can significantly reduce the computational time while maintaining calculation accuracy. Thus, this article not only provides an in-depth understanding of the fundamental properties of BiOI as a potential efficient photocatalyst driven by visible light, but it also suggests a suitable computational method to investigate these properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据