4.7 Article

Characterization of the highly fractured zone at the Grimsel Test Site based on hydraulic tomography

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 26, 期 24, 页码 6443-6455

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-26-6443-2022

关键词

-

资金

  1. German Research Foundation (DFG)
  2. [BA-2850-5-1]

向作者/读者索取更多资源

In this study, the authors used a stochastic inversion method to infer the structural and hydraulic properties of a highly fractured zone at the Grimsel Test Site in Switzerland. The results revealed the presence of two preferential flow paths, with an increased probability of fractures linking the paths as the distance to the second injection borehole decreased.
In this study, we infer the structural and hydraulic properties of the highly fractured zone at the Grimsel Test Site in Switzerland using a stochastic inversion method. The fractured rock is modeled directly as a discrete fracture network (DFN) within an impermeable rock matrix. Cross-hole transient pressure signals recorded from constant-rate injection tests at different intervals provide the basis for the (herein presented) first field application of the inversion. The experimental setup is realized by a multi-packer system. The geological mapping of the structures intercepted by boreholes as well as data from previous studies that were undertaken as part of the In Situ Stimulation and Circulation (ISC) experiments facilitate the setup of the site-dependent conceptual and forward model. The inversion results show that two preferential flow paths between the two boreholes can be distinguished: one is dominated by fractures with large hydraulic apertures, whereas the other path consists mainly of fractures with a smaller aperture. The probability of fractures linking both flow paths increases the closer we get to the second injection borehole. These results are in accordance with the findings of other studies conducted at the site during the ISC measurement campaign and add new insights into the highly fractured zone at this prominent study site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据