4.2 Article

Variational dynamics as a ground-state problem on a quantum computer

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.043161

关键词

-

资金

  1. NCCR MARVEL, a National Centre of Competence in Research - Swiss National Science Foundation [205602]

向作者/读者索取更多资源

In this study, we propose a variational quantum algorithm to study the real-time dynamics of quantum systems. Through numerical experiments, we demonstrate its robustness and feasibility.
We propose a variational quantum algorithm to study the real-time dynamics of quantum systems as a ground -state problem. The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits. We prepare the Feynman-Kitaev Hamiltonian acting on the composed system as a qubit operator and find an approximate ground state using the variational quantum eigensolver. We apply the algorithm to the study of the dynamics of a transverse-field Ising chain with an increasing number of spins and time steps, proving a favorable scaling in terms of the number of two-qubit gates. Through numerical experiments, we investigate its robustness against noise, showing that the method can be used to evaluate dynamical properties of quantum systems and detect the presence of dynamical quantum phase transitions by measuring Loschmidt echoes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据