4.6 Review

Structured Analysis and Review of Filter-Based Control Strategies for Hybrid Energy Storage Systems

期刊

IEEE ACCESS
卷 10, 期 -, 页码 126269-126284

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2022.3226261

关键词

Low-pass filters; Adaptive filters; Energy storage; Mathematical models; Cutoff frequency; Behavioral sciences; Information filters; Energy management; energy storage; hybrid energy storage systems; low-pass filters; power control; simulation; statistical analysis; systems modeling

资金

  1. German Federal Ministry of Education and Research [Bundesministerium fuer Bildung und Forschung (BMBF)] [03SF0560A]
  2. Leibniz University Hannover

向作者/读者索取更多资源

Hybrid energy storage systems, which combine two different energy storage technologies, are a promising solution for energy storage problems. This study provides a structured analysis and mathematical background on filter-based control of hybrid energy storage systems. Numerical simulations demonstrate the high cycle-reduction capabilities of filter-controlled HESS, although overdimensioning is required compared to more advanced control strategies.
Hybrid energy storage systems (HESS), i.e., the combination of two different energy storage technologies, are widely discussed as a promising solution for energy storage problems. A common control scheme to allocate the power between these storages and the subject of this study is filter-based control, where a filter splits the input signal into a low-frequency and high-frequency part. It provides robust results and easy implementation, although more advanced strategies may perform better. Many publications use this controller for specific problems, but a structured analysis of this controller type that quantifies the advantages and disadvantages, traits, and setbacks is missing. This work fills this gap and structures, summarizes, and provides mathematical background and guidelines on filter-based control of hybrid energy storage systems. Numerical simulations are performed to quantify the impact of design variables, parameters, or the input signal by using a linear storage model with efficiency and self-discharge rate and a low-pass filter controller with constant energy feedback as a representative subtype of this control scheme. The present work proves the high cycle-reduction capabilities of filter-controlled HESS at the cost of overdimensioning compared to more advanced control strategies. It demonstrates that using a high-efficiency, high-power storage with a low self-discharge rate and high-energy storage leads to smaller overall dimensioning and losses than a single storage system. The study identifies the feedback factor of the controller as the most impacting design variable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据