4.5 Article

Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability

期刊

BRAIN AND BEHAVIOR
卷 6, 期 4, 页码 -

出版社

WILEY
DOI: 10.1002/brb3.448

关键词

Brain network; gray matter volume; hub; reliability; structural MRI

资金

  1. National Natural Science Foundation of China [81301284]
  2. Zhejiang Provincial Natural Science Foundation of China [LZ13C090001]

向作者/读者索取更多资源

IntroductionStructural MRI has long been used to characterize local morphological features of the human brain. Coordination patterns of the local morphological features among regions, however, are not well understood. Here, we constructed individual-level morphological brain networks and systematically examined their topological organization and long-term test-retest reliability under different analytical schemes of spatial smoothing, brain parcellation, and network type. MethodsThis study included 57 healthy participants and all participants completed two MRI scan sessions. Individual morphological brain networks were constructed by estimating interregional similarity in the distribution of regional gray matter volume in terms of the Kullback-Leibler divergence measure. Graph-based global and nodal network measures were then calculated, followed by the statistical comparison and intra-class correlation analysis. ResultsThe morphological brain networks were highly reproducible between sessions with significantly larger similarities for interhemispheric connections linking bilaterally homotopic regions. Further graph-based analyses revealed that the morphological brain networks exhibited nonrandom topological organization of small-worldness, high parallel efficiency and modular architecture regardless of the analytical choices of spatial smoothing, brain parcellation and network type. Moreover, several paralimbic and association regions were consistently revealed to be potential hubs. Nonetheless, the three studied factors particularly spatial smoothing significantly affected quantitative characterization of morphological brain networks. Further examination of long-term reliability revealed that all the examined network topological properties showed fair to excellent reliability irrespective of the analytical strategies, but performing spatial smoothing significantly improved reliability. Interestingly, nodal centralities were positively correlated with their reliabilities, and nodal degree and efficiency outperformed nodal betweenness with respect to reliability. ConclusionsOur findings support single-subject morphological network analysis as a meaningful and reliable method to characterize structural organization of the human brain; this method thus opens a new avenue toward understanding the substrate of intersubject variability in behavior and function and establishing morphological network biomarkers in brain disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据