4.6 Article

Emergent antiferromagnetism in Y-shaped Kekul? graphene

期刊

PHYSICAL REVIEW B
卷 106, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.245116

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [11774019, 12074022]
  2. NSAF grant in NSFC [U1930402]
  3. Fundamental Research Funds for the Central Universities
  4. Singapore MOE AcRF Tier 2 [MOE-T2EP50220-0011]
  5. National Key Research and Development Program of China [2021YFA1401803]
  6. NSFC [11974051, 11734002]

向作者/读者索取更多资源

In this study, the antiferromagnetic (AFM) transitions of birefringent Dirac fermions in graphene are investigated. The results show that the quantum critical point can be continuously tuned by the bond-modulation strength, and the critical interaction scales with the geometric average of the two velocities of the birefringent Dirac cones.
Antiferromagnetic (AFM) transitions of birefringent Dirac fermions created by a Y-shaped Kekule distortion in graphene are investigated by mean-field theory and determinant quantum Monte Carlo simulations. We show that the quantum critical point can be continuously tuned by the bond-modulation strength, and the universality of the quantum criticality remains in the Gross-Neveu-Heisenberg class. The critical interaction scales with the geometric average of the two velocities of the birefringent Dirac cones, and decreases monotonically between the uniform and completely depleted limits. Since the AFM critical interaction can be tuned to very small values, antiferromagnetism may emerge automatically, realizing the long-sought magnetism in graphene. These results enrich our understanding of the semimetal-AFM transitions in Dirac-fermion systems, and open a route to achieve magnetism in graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据