3.9 Article

Experimental and Numerical Investigation of the In-Plane Compression of Corrugated Paperboard Panels

期刊

出版社

MDPI
DOI: 10.3390/mca27060108

关键词

corrugated cardboard; panel compression; digital image correlation; finite element analysis

向作者/读者索取更多资源

Finite element analysis is a useful design tool for predicting load capacity of corrugated paperboard boxes, but it often underpredicts in-plane deformation. A study found that discrepancies in stiffness between experimental results and FEA can be attributed to imperfections in the panels and jig. Including initial imperfections and considering box complexities can improve accuracy in FEA models.
Finite element analysis (FEA) has been proven as a useful design tool to model corrugated paperboard boxes, and is capable of accurately predicting load capacity. The in-plane deformation, however, is usually significantly underpredicted. To investigate this discrepancy, a panel compression test jig, that implemented simply supported boundary conditions, was built to test individual panels. The panels were then modelled using non-linear FEA with a linear material model. The results show that the in-plane deformation was still underpredicted, but a general improvement was seen. Three discrepancies were identified. The first was that the panels showed an initial region of low stiffness that was not present in the FEA results. This was attributed to imperfections in the panels and jig. Secondly, the experimental results reported a lower stiffness than the FEA. Applying an initial imperfection in the shape of the first buckling mode shape was found to reduce the FEA stiffness. Thirdly, the panels showed a decrease in stiffness near failure, which was not seen in the FEA. A bi-linear material model was investigated and holds the potential to improve the results. Box compression tests were performed on a Regular Slotted Container (RSC) with the same dimensions as the tested panel. The box displaced 13.1 mm compared to 3.5 mm for the panel. There was an initial region of low stiffness, which accounted for 7 mm of displacement compared to 0.5 mm for the panels. Thus, box complexities such as horizontal creases should be included in finite element (FE) models to accurately predict the in-plane deformation, while a bi-linear (or any other non-linear) material model may be useful for panel compression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据