4.4 Article

Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress

期刊

ARCHIVES OF AGRONOMY AND SOIL SCIENCE
卷 63, 期 5, 页码 599-611

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/03650340.2016.1233322

关键词

Soil salinity; primary photochemistry; silicon concentration

资金

  1. Higher Education Commission, Pakistan under International Research Support Initiative Program

向作者/读者索取更多资源

Soil salinity imposes an unprecedented risk to the soil fertility and availability of plant nutrients. The present proposal is designed to address the effect of salt stress on photosynthetic apparatus of maize including chlorophyll a fluorescence and how silicon nutrition helps to overcome this issue. In a sand culture experiment, two maize cultivars were sown in small pots with two levels of silicon (0 and 2 mM H2SiO3) and two levels of salinity stress (0 and 60 mM NaCl). Salinity stress reduced dry matter yield and potassium (K) concentration in both maize cultivars and also induced inefficient working of photosynthetic apparatus including photochemical efficiency of photosystem II. Silicon addition alleviated NaCl stress on maize crop by improving the dry matter yield and water use efficiency (WUE). It decreased shoot Na concentration by increasing root and shoot K concentration of maize plants. It enhanced maximum quantum yield of primary photochemistry which leads to smooth electron transport chain. It also significantly enhanced shoot silicon concentration and has a significant positive correlation with WUE. Therefore, silicon-treated maize plants have better chance to survive under salt stress conditions as their photosynthetic apparatus is working far better than non-silicon-treated plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据