4.2 Article

Persistent current oscillations in a double-ring quantum gas

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.043171

关键词

-

资金

  1. EPSRC Doctoral Prize Fellowship [EP/R51309X/1]
  2. FWF [I4426]
  3. Quantera ERA-NET - project NAQUAS through the Engineering and Physical Science Research Council [EP/R043434/1]
  4. National Research Foundation of Ukraine [2020.02/0032]
  5. US National Science Foundation [PHY-1707776, PHY-2207476]
  6. Hanse-Wissenschaftskolleg
  7. Austrian Science Fund (FWF) [I4426] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

In this work, a method to engineer transport of quantized vorticity in closed quantum fluid circuits is developed. The controllable periodic transfer of current is observed and characterized by introducing a tunable weak link between ring-shaped atomic Bose-Einstein condensates. The role of temperature on suppressing these oscillations is investigated using complementary state-of-the-art numerical methods.
Vorticity in closed quantum fluid circuits is known to arise in the form of persistent currents. In this work, we develop a method to engineer transport of the quantized vorticity between density-coupled ring-shaped atomic Bose-Einstein condensates in experimentally accessible regimes. Introducing a tunable weak link between the rings, we observe and characterize the controllable periodic transfer of the current and investigate the role of temperature on suppressing these oscillations via a range of complementary state-of-the-art numerical methods. Our setup paves the way for precision measurements of local acceleration and rotation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据