4.5 Article

Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers

期刊

ADVANCED MATERIALS INTERFACES
卷 3, 期 5, 页码 -

出版社

WILEY
DOI: 10.1002/admi.201500672

关键词

elastomeric nanocomposites; graphene oxide; polyurethane; strain sensing; wet-spinning

资金

  1. Australian Research Council [CE140100012, FL110100196, FT130100380]
  2. Australian Research Council [FL110100196] Funding Source: Australian Research Council

向作者/读者索取更多资源

Recent advances in wearable electronics, technical textiles, and wearable strain sensing devices have resulted in extensive research on stretchable electrically conductive fibers. Addressing these areas require the development of efficient fiber processing methodologies that do not compromise the mechanical properties of the polymer (typically an elastomer) when nanomaterials are added as conductive fillers. It is highly desirable that the addition of conductive fillers provides not only electrical conductivity, but that these fillers also enhance the stiffness, strength, stretchability, and toughness of the polymer. Here, the compatibility of polyurethane (PU) and graphene oxide (GO) is utilized for the study of the properties of elastomeric conductive fibers prepared by wet-spinning. The GO-reinforced PU fibers demonstrate outstanding mechanical properties with a 200-fold and a threefold enhancement in Young's modulus and toughness, respectively. Postspinning thermal annealing of the fibers results in electrically conductive fibers with a low percolation threshold (approximate to 0.37 wt% GO). An investigation into optimized fiber's electromechanical behavior reveals linear strain sensing abilities up to 70%. Results presented here provide practical insights on how to simultaneously maintain or improve electrical, mechanical, and electromechanical properties in conductive elastomer fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据