4.6 Article

Low-Loss BaTiO3-Si Waveguides for Nonlinear Integrated Photonics

期刊

ACS PHOTONICS
卷 3, 期 9, 页码 1698-1703

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.6b00350

关键词

barium titanate; silicon photonics; Pockels effect; propagation losses; hydrogenation

资金

  1. European Commission [FP7-ICT-2013-11-619456 SITOGA]
  2. Swiss National Foundation [200021_159565 PADOMO]

向作者/读者索取更多资源

Barium titanate (BaTiO3) has become an attractive material to extend the functionalities of the silicon photonics platform because of its large Pockels coefficient of more than 1000 pm/V. BaTiO3 integrated epitaxially on silicon-on-insulator substrates can be structured in passive and electro-optic silicon photonic devices using slot-waveguide geometries, both of which have been demonstrated. However, all devices demonstrated so far suffer from high optical propagation losses of similar to 40-600 dB/cm, which limits their performance compared with state-of-the-art silicon photonics devices (<2 dB/cm). Here, we identify the origin of these high propagation losses and demonstrate a path to fabricate low-loss BaTiO3-Si waveguides with propagation losses of only 6 dB/cm. In particular, we identified the thin strontium titanate (SrTiO3) seed layer typically used for the epitaxial deposition of BaTiO3 on silicon as the main source of absorption: When manufacturing slot-waveguide structures, the BaTiO3/SrTiO3 layer stack is typically, exposed to hydrogen, which is incorporated in the SrTiO3 layer, and causes absorption. We demonstrate that a low-temperature anneal is sufficient to remove hydrogen and to achieve low propagation losses in waveguides. Thus, we found a way to eliminate the previously observed showstopper for incorporating functional and highly nonlinear barium titanate films into silicon photonic structures, ultimately enabling ultra-high-speed switches and novel nonvolatile optical silicon photonic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据