4.6 Article

In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production

期刊

ACTA PHYSICO-CHIMICA SINICA
卷 38, 期 12, 页码 -

出版社

PEKING UNIV PRESS
DOI: 10.3866/PKU.WHXB202201037

关键词

Photocatalysis; Heterojunction; MoSx; In2O3; Hydrogen production

资金

  1. Natural Science Foundation of the Ningxia Hui Autonomous Region, China [2020AAC02026]

向作者/读者索取更多资源

By regulating the morphology and constructing heterojunction, a three-dimensional nanoflower morphology MoSx/In2O3 composite catalyst was prepared, which significantly improved the hydrogen evolution activity and solved the light absorption issue of In2O3.
Morphology regulation and the improvement of carrier separation efficiency are important strategies for the preparation of photocatalysts with excellent performance. MoSx with a three-dimensional (3D) nanoflower morphology formed by nanosheet stacking was prepared by a simple hydrothermal method, and MoSx/In2O3 with good hydrogen evolution activity was obtained by coupling with In2O3. The preparation of the three-dimensional nanoflower morphology combined with the construction of an S-scheme heterojunction improves the electron accumulation at the active site for hydrogen evolution reaction. The UV diffuse reflection test showed that the issue of poor light absorption of In2O3 was improved. The rapid separation and transfer of electrons were effectively confirmed by characterization methods such as fluorescence spectroscopy and electrochemical tests. The most intuitively manifestation of the performance improvement of the composite material is that the optimal hydrogen evolution rate reached 6704.2 mu mol.g(-1).h(-1), which is 1.8 times that of pure MoSx. Therefore, in this study, a new idea for the development of molybdenum-based sulfides for photocatalytic hydrogen production is provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据