4.8 Review

Nonlinear Effects in Asymmetric Catalysis by Design: Concept, Synthesis, and Applications

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 55, 期 23, 页码 3345-3361

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.2c005573345

关键词

-

资金

  1. European Research Council (ERC)
  2. [258740]

向作者/读者索取更多资源

Asymmetric synthesis is a crucial technique for the preparation of chiral compounds and the control of stereocenters in complex syntheses. Configurationally flexible ligands and catalysts can be enriched through dynamic processes, leading to improved enantioselectivity in asymmetric catalysis. This strategy has significant implications for the development of new catalytic applications and understanding of chirality amplification and homochirality in biological systems.
CONSPECTUS: Asymmetric synthesis constitutes a key technology for the preparation of enantiomerically pure compounds as well as for the selective control of individual stereocenters in the synthesis of complex compounds. It is thus of extraordinary importance for the synthesis of chiral drugs, dietary supplements, flavors, and fragrances, as well as novel materials with tunable and reconfigurable chiroptical properties or the assembly of complex natural products. Typically, enantiomerically pure catalysts are used for this purpose. To prepare enantiomerically pure ligands or organocatalysts, one can make use of the natural chiral pool. Ligands and organocatalysts with an atropisomeric biphenyl and binaphthyl system have become popular, as they are configurationally stable and contain a C2symmetric skeleton, which has been found to be particularly privileged. For catalysts with opposite configurations, both product enantiomers can be obtained. Configurationally flexible biphenyl systems initially appeared to be unsuitable for this purpose, as they racemize after successful enantiomer separation and thus are neither storable nor afford a reproducible enantioselectivity. However, there are strategies that exploit the dynamics of such ligands to stereoconvergently enrich one of the catalyst enantiomers. This can be achieved, for example, by coordinating an enantiomerically pure additive to a ligand-metal complex, which results in deracemization of the configurationally flexible biphenyl system, thereby enriching the thermodynamically preferred diastereomer. In this Account, we present our strategy to design stereochemically flexible catalysts that combine the properties of supramolecular recognition, stereoconvergent alignment, and catalysis. Such systems are capable to recognize the chirality of the target product, leading to an increase in enantioselectivity during asymmetric catalysis. We have systematically developed and investigated these smart catalyst systems and have found ways to specifically design and synthesize them for various applications. In addition to (i) reaction product-induced chiral amplification, we have developed systems with (ii) intermolecular and (iii) intramolecular recognition, and successfully applied them in asymmetric catalysis. Our results pave the way for new applications such as temperature-controlled enantioselectivity, controlled inversion of enantioselectivity with the same chirality of the recognition unit, generation of positive nonlinear effects, and targeted design of autocatalytic systems through dynamic formation of transient catalysts. Understanding such systems is of enormous importance for catalytic processes leading to symmetry breaking and amplification of small imbalances of enantiomers and offer a possible explanation of homochirality of biological systems. In addition, we are learning how to target supramolecular interactions to enhance enantioselectivities in asymmetric catalysis through secondary double stereocontrol. Configurationally flexible catalysts will enable future resource-efficient development of asymmetric syntheses, as enantioselectivities can be fully switched by stereoselective alignment of the stereochemically flexible ligand core on demand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据