4.6 Article

Anisotropic Rh3+Diffusion in Layered Hexaaluminate Mitigates Thermal Deactivation of Supported Rhodium Catalysts

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 126, 期 41, 页码 17608-17617

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.2c0603017608

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) program, Element Strategy Initiative to Form Core Research Center [JPMXP0112101003]

向作者/读者索取更多资源

When Rh catalysts supported on Al2O3-based oxides are exposed to a high-temperature oxidizing environment, they lose their three-way catalytic activity due to the diffusion of Rh3+ into the support structure. The diffusion of Rh3+ is suppressed in the layered structure of hexaaluminate, which effectively blocks further penetration and preserves their reduction to active metallic Rh nanoparticles.
When exposed to a high-temperature oxidizing environment, Rh catalysts supported on Al2O3-based oxides lose their three-way catalytic activity as a result of unfavorable interface interactions that allow Rh3+ to diffuse into the support structure and occupy Al3+ sites. This study showed that the incorporated Rh3+ ions were not easily reduced to active Rh metal species and caused substantial thermal deactivation. The deactivation was most obvious for gamma-Al2O3 and MgAl2O4 with a spinel-type structure but much less for hexaaluminate (LaMgAl11O19) with a layered structure consisting of alternative stacking of a spinel block and a La-O monolayer. After annealing at 900 and 1000 degrees C for 100 h in the air, Rh-deposited single crystals were studied by dynamic secondary ion mass spectrometry to analyze the Rh depth profile. The Rh depth profile in LaMgAl11O19 showed that the diffusion along the c axis (parallel to c) was significantly suppressed compared to that normal to the c axis (perpendicular to c). The diffusion of Rh3+ was faster and nearly isotropic in a MgAl2O4 single crystal, which was used as a model crystal for gamma-Al2O3. These results show that the layered structure of hexaaluminate influences the Rh3+ diffusion, i.e., the La-O interlayer between closely packed spinel blocks running at every approximately 1.1 nm interval is likely the diffusion barrier. This barrier effectively blocks further penetration of the incorporated Rh3+ ions from the surface and preserves their smooth reduction to active metallic Rh nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据