4.6 Article

Light-induced topological superconductivity in transition metal dichalcogenide monolayers

期刊

PHYSICAL REVIEW B
卷 106, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.134510

关键词

-

向作者/读者索取更多资源

It is demonstrated that electrons interacting with a Bose-Einstein condensate (BEC) of exciton-polaritons can realize a two-dimensional topological p(x) + ip(y) superconductor. This is caused by an attractive interaction mediated by the BEC, which overcompensates the repulsive Coulomb interaction between the electrons. The hybrid light-matter nature of the BEC is crucial for achieving this.
Monolayer transition metal dichalcogenides (TMDs) host deeply bound excitons interacting with itinerant electrons, and as such they represent an exciting new quantum many-body Bose-Fermi mixture. Here, we demonstrate that electrons interacting with a Bose-Einstein condensate (BEC) of exciton-polaritons can realize a two-dimensional topological p(x) + ip(y) superconductor. Using strong coupling Eliashberg theory, we show that this is caused by an attractive interaction mediated by the BEC, which overcompensates the repulsive Coulomb interaction between the electrons. The hybrid light-matter nature of the BEC is crucial for achieving this, since it can be used to reduce retardation effects and increase the mediated interaction in regimes important for pairing. We finally show how the great flexibility of TMDs allows one to tune the critical temperature of the topological superconducting phase to be within experimental reach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据