4.6 Article

Fractional quantum Hall valley ferromagnetism in the extreme quantum limit

期刊

PHYSICAL REVIEW B
卷 106, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.106.L201303

关键词

-

资金

  1. U.S. Department of Energy Basic Energy Science [DEFG02-00-ER45841]
  2. National Science Foundation [DMR 2104771, ECCS 1906253, DMR-1644779]
  3. Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF9615]
  4. QuantEmX travel grants from the Institute for Complex Adaptive Matter
  5. Gordon and Betty Moore Foundation [GBMF5305]
  6. State of Florida

向作者/读者索取更多资源

This study demonstrates how the valley degree of freedom impacts the fractional quantum states (FQHSs) through magnetotransport experiments. The researchers find a surprisingly robust ferromagnetism of the FQHSs and the underlying composite fermions (CFs), suggesting a strong interaction between the CFs in the system.
Electrons' multiple quantum degrees of freedom can lead to rich physics, including a competition between various exotic ground states, as well as novel applications such as spintronics and valleytronics. Here we report magnetotransport experiments demonstrating how the valley degree of freedom impacts the fractional quantum states (FQHSs), and the related magnetic-flux-electron composite fermions (CFs), at very high magnetic fields in the extreme quantum limit when only the lowest Landau level is occupied. Unlike in other multivalley two-dimensional electron systems such as Si or monolayer graphene and transition-metal dichalcogenides, in our AlAs sample we can continuously tune the valley polarization via the application of in situ strain. We find that the FQHSs remain exceptionally strong even as they make valley polarization transitions, revealing a surprisingly robust ferromagnetism of the FQHSs and the underlying CFs. Our observation implies that the CFs are strongly interacting in our system. We are also able to obtain a phase diagram for the FQHS and CF valley polarization in the extreme quantum limit as we monitor transitions of the FHQSs with different valley polarizations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据